login
Decimal expansion of 1/(1 - e^(-gamma)).
0

%I #23 Dec 21 2022 20:48:05

%S 2,2,8,0,2,9,1,0,1,6,5,1,4,3,6,0,4,2,8,2,8,6,7,4,6,8,1,2,3,2,5,1,0,9,

%T 0,1,8,1,1,0,2,8,2,4,1,3,3,2,7,4,3,8,0,5,3,4,5,0,4,1,8,7,6,6,9,0,7,6,

%U 6,2,8,0,4,4,0,1,6,1,5,6,0,6,1,1,6,2,1,8,8,6,0,4,2,3,6,0,9,1,2,8,0,5,2,2,9

%N Decimal expansion of 1/(1 - e^(-gamma)).

%C This constant is mentioned by _Andreas Weingartner_.

%H Andreas Weingartner, <a href="https://arxiv.org/abs/2101.11585">The number of prime factors of integers with dense divisors</a>, arXiv preprint arXiv:2101.11585 [math.NT], 2021.

%F Equals 1/A227242.

%F Equals 1/(1 - A080130).

%F Equals 1/(1 - A001113^(-A001620)).

%e 2.2802910165143604282867468123251090181102824133274380534504187669076628...

%t RealDigits[1/(1 - Exp[-EulerGamma]), 10, 120][[1]] (* _Amiram Eldar_, Dec 15 2022 *)

%o (PARI) 1/(1-exp(-Euler)) \\ _Michel Marcus_, Dec 15 2022

%Y Cf. A001113, A001620, A080130, A174973, A227242.

%K nonn,cons

%O 1,1

%A _Omar E. Pol_, Dec 14 2022

%E More terms from _Alois P. Heinz_, Dec 14 2022