login
a(n+1) gives the number of occurrences of the mode of the digits of a(n) among all the digits of [a(0), a(1), ..., a(n)], with a(0)=0.
1

%I #21 Dec 23 2024 14:53:46

%S 0,1,1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,2,2,3,2,4,2,5,2,6,2,7,2,8,2,

%T 9,2,10,3,3,4,3,5,3,6,3,7,3,8,3,9,3,10,4,4,5,4,6,4,7,4,8,4,9,4,10,5,5,

%U 6,5,7,5,8,5,9,5,10,6,6,7,6,8,6,9,6,10,7,7,8,7,9,7,10

%N a(n+1) gives the number of occurrences of the mode of the digits of a(n) among all the digits of [a(0), a(1), ..., a(n)], with a(0)=0.

%C The mode is the most frequently occurring value among the digits of a(n). When there are multiple values occurring equally frequently, the mode is the smallest of those values.

%C Up to a(464)=110, the terms are identical to A358967.

%H Bence BernĂ¡th, <a href="/A359031/b359031.txt">Table of n, a(n) for n = 0..20000</a>

%H Eric Angelini, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/pipermail/seqfan/2014-October/013784.html">Digit-counters updating themselves</a>

%o (MATLAB)

%o length_seq=470;

%o sequence(1)=0;

%o seq_for_digits=(num2str(sequence(1))-'0');

%o for i1=1:1:length_seq

%o sequence(i1+1)=sum(seq_for_digits==mode((num2str(sequence(i1))-'0'))');

%o seq_for_digits=[seq_for_digits, num2str(sequence(i1+1))-'0'];

%o end

%o (Python)

%o import statistics as stat

%o sequence=[0]

%o length=470

%o seq_for_digits=list(map(int, list(str(sequence[0]))))

%o for ii in range(length):

%o sequence.append(seq_for_digits.count(stat.mode(list(map(int, list(str(sequence[-1])))))))

%o seq_for_digits.extend(list(map(int, list(str(sequence[-1])))))

%Y Cf. A248034, A249009, A356348, A336514, A358967, A358851, A322182.

%K nonn,base,look

%O 0,4

%A _Bence BernĂ¡th_, Dec 12 2022