%I #10 Dec 07 2022 08:58:04
%S 24,144,240,3240,75840
%N Number of directed Hamiltonian paths of the Platonic graphs (in the order of tetrahedral, cubical, octahedral, dodecahedral, and icosahedral graph).
%C a(n)/2 is the number of undirected Hamiltonian paths of the Platonic graph corresponding to a(n).
%C From symmetry, a(n) is a multiple of A063723(n).
%H Seiichi Manyama, <a href="https://github.com/manman4/OEIS_03/blob/main/358/358960/358960_01.py">Python program</a> (github)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TetrahedralGraph.html">Tetrahedral Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CubicalGraph.html">Cubical Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OctahedralGraph.html">Octahedral Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DodecahedralGraph.html">Dodecahedral Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IcosahedralGraph.html">Icosahedral Graph</a>
%Y Cf. A053016, A063723, A268283, A343213.
%K nonn,fini,full
%O 1,1
%A _Seiichi Manyama_, Dec 07 2022