OFFSET
0,2
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) 0 = Sum_{n=-oo..+oo} x^(9*n) * (x^n - 2*A(x))^(10*n+1).
(2) 0 = Sum_{n=-oo..+oo} x^(10*n*(n-1)) / (1 - 2*A(x)*x^n)^(10*n-1).
EXAMPLE
G.f.: A(x) = 1 + 9*x + 171*x^2 + 3819*x^3 + 94221*x^4 + 2474541*x^5 + 67842255*x^6 + 1919233719*x^7 + 55608288057*x^8 + 1641837803793*x^9 + 49218744365683*x^10 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(n=-#A, #A, x^(9*n) * (x^n - 2*Ser(A))^(10*n+1) ), #A-1)/2); A[n+1]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 07 2022
STATUS
approved