login
Number of finite sequences of integer partitions with total sum n and all distinct lengths.
6

%I #12 Dec 31 2022 11:20:20

%S 1,1,2,5,11,23,49,103,214,434,874,1738,3443,6765,13193,25512,48957,

%T 93267,176595,332550,622957,1161230,2153710,3974809,7299707,13343290,

%U 24280924,43999100,79412942,142792535,255826836,456735456,812627069,1440971069,2546729830

%N Number of finite sequences of integer partitions with total sum n and all distinct lengths.

%H Andrew Howroyd, <a href="/A358912/b358912.txt">Table of n, a(n) for n = 0..1000</a>

%e The a(1) = 1 through a(4) = 11 sequences:

%e (1) (2) (3) (4)

%e (11) (21) (22)

%e (111) (31)

%e (1)(11) (211)

%e (11)(1) (1111)

%e (11)(2)

%e (1)(21)

%e (2)(11)

%e (21)(1)

%e (1)(111)

%e (111)(1)

%t ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];

%t Table[Length[Select[ptnseq[n],UnsameQ@@Length/@#&]],{n,0,10}]

%o (PARI)

%o P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}

%o seq(n) = {my(g=P(n,y)); [subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, n, 1 + y*polcoef(g, k, y) + O(x*x^n)))]} \\ _Andrew Howroyd_, Dec 30 2022

%Y The case of set partitions is A007837.

%Y This is the case of A055887 with all distinct lengths.

%Y For distinct sums instead of lengths we have A336342.

%Y The case of twice-partitions is A358830.

%Y The unordered version is A358836.

%Y The version for constant instead of distinct lengths is A358905.

%Y A000041 counts integer partitions, strict A000009.

%Y A063834 counts twice-partitions.

%Y A141199 counts sequences of partitions with weakly decreasing lengths.

%Y Cf. A000219, A001970, A038041, A060642, A218482, A271619, A319066, A358831, A358901, A358906, A358908.

%K nonn

%O 0,3

%A _Gus Wiseman_, Dec 07 2022

%E Terms a(16) and beyond from _Andrew Howroyd_, Dec 30 2022