login
A358846
a(n) = 1 if A276086(6*n) == 5 (mod 6), otherwise 0, where A276086 is the primorial base exp-function.
6
0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1
OFFSET
0
COMMENTS
Question: Are 0's and 1's evenly distributed? Exactly 50/50? See also A358847.
FORMULA
a(n) = [A276086(6*n) == 5 (mod 6)], where [ ] is the Iverson bracket.
a(n) = A358842(6*n).
a(0) = 0, and for n > 0, a(n) = a(n-1) XOR A358847(n), where XOR is bitwise-XOR, A003987. See comments in A358842.
PROG
(PARI)
A358842(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (5==(m%6)); };
A358846(n) = A358842(6*n);
CROSSREFS
Characteristic function of A358844, whose complement A358845 gives the positions of zeros.
Sequence in context: A189661 A145573 A092202 * A285686 A303591 A159684
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 03 2022
STATUS
approved