login
A358842
a(n) = 1 if A276086(n) is of the form 6k+5, where A276086 is the primorial base exp-function.
7
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0
COMMENTS
The XOR-formula involving A358755 corresponds to the XOR-formula given for A353489, which is based on the lemma given in A353516. A similar lemma exists for mod 6 case.
FORMULA
a(n) = [5 == A276086(n) mod 6], where [ ] is the Iverson bracket.
a(n) = A079979(n) - A358841(n) = A059841(n) - A120325(n) - A358841(n).
For all n >= 6, a(n) = a(n-6) XOR A358755(n), where XOR is bitwise-XOR, A003987.
PROG
(PARI) A358842(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (5==(m%6)); };
CROSSREFS
Characteristic function of A358843.
Cf. also A353516, A353489.
Sequence in context: A023972 A185016 A103674 * A358758 A185708 A373256
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 02 2022
STATUS
approved