OFFSET
0,3
COMMENTS
A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n, so these are twice-partitions of n into partitions with constant lengths and constant sums.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{d|n} Sum_{j=1..n/d} A008284(n/d, j)^d for n > 0. - Andrew Howroyd, Dec 31 2022
EXAMPLE
The a(1) = 1 through a(5) = 8 twice-partitions:
(1) (2) (3) (4) (5)
(11) (21) (22) (32)
(1)(1) (111) (31) (41)
(1)(1)(1) (211) (221)
(1111) (311)
(2)(2) (2111)
(11)(11) (11111)
(1)(1)(1)(1) (1)(1)(1)(1)(1)
MATHEMATICA
twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn], {ptn, IntegerPartitions[n]}];
Table[Length[Select[twiptn[n], SameQ@@Length/@#&&SameQ@@Total/@#&]], {n, 0, 10}]
PROG
(PARI)
P(n, y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(u=Vec(P(n, y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, polcoef(p, j, y)^d))))} \\ Andrew Howroyd, Dec 31 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 04 2022
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022
STATUS
approved