login
A358773
a(n) = 1 if the arithmetic derivative of n is of the form 4k+3, otherwise 0.
8
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1
OFFSET
0
FORMULA
a(n) = [A003415(n) == 3 (mod 4)], where [ ] is the Iverson bracket.
a(n) = A165560(n) - A358771(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A358773(n) = (3==(A003415(n)%4));
CROSSREFS
Characteristic function of A358774.
Cf. also A353494, A358771, A353495 and A358753 [= a(A003961(n))].
Sequence in context: A297040 A185705 A369667 * A044941 A368699 A277151
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 01 2022
STATUS
approved