login
A358765
a(n) = A003415(n)*A276086(n) mod 60, where A003415 is the arithmetic derivative and A276086 is the primorial base exp-function.
6
0, 0, 3, 6, 36, 18, 25, 10, 0, 0, 15, 30, 40, 50, 15, 0, 0, 30, 45, 10, 0, 0, 45, 30, 20, 20, 45, 30, 0, 30, 37, 14, 0, 48, 57, 12, 0, 10, 45, 0, 0, 30, 35, 50, 0, 30, 15, 30, 20, 20, 45, 0, 0, 30, 15, 20, 0, 0, 45, 30, 8, 38, 51, 54, 12, 36, 5, 10, 0, 0, 15, 30, 0, 50, 45, 30, 0, 0, 55, 10, 0, 0, 15
OFFSET
0,3
FORMULA
a(n) = A358669(n) mod 60.
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A358765(n) = ((A003415(n)*A276086(n))%60);
CROSSREFS
Cf. A016825 (positions of odd terms), A042965 (of even terms), A235992 (of multiples of 4), A067019 (of terms of the form 4k+2).
Sequence in context: A184390 A359424 A359423 * A358669 A130317 A019467
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 06 2022
STATUS
approved