login
A358758
a(n) = 1 if A358669(n) == 1 (mod 4), otherwise 0.
3
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0
FORMULA
a(n) = [A358669(n) == 1 (mod 4), where [ ] is the Iverson bracket.
a(n) = 1-A152822(n)-A358759(n).
a(n) = A353488(n)*A358771(n) + A353489(n)*A358773(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A358758(n) = (1==((A003415(n)*A276086(n))%4));
CROSSREFS
Characteristic function of A358748.
Sequence in context: A185016 A103674 A358842 * A185708 A373256 A286996
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 06 2022
STATUS
approved