login
A358724
Difference between the number of internal (non-leaf) nodes and the edge-height of the rooted tree with Matula-Goebel number n.
6
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 1, 0, 1, 2, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 0, 2, 1, 0, 0, 2, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 3, 0, 1, 1, 2, 0, 1
OFFSET
1,25
COMMENTS
Edge-height (A109082) is the number of edges in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
FORMULA
a(n) = A342507(n) - A109082(n).
EXAMPLE
The tree (o(o)((o))(oo)) with Matula-Goebel number 210 has edge-height 3 and 5 internal nodes, so a(210) = 2.
MATHEMATICA
MGTree[n_]:=If[n==1, {}, MGTree/@Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Count[MGTree[n], _[__], {0, Infinity}]-(Depth[MGTree[n]]-2), {n, 100}]
CROSSREFS
Positions of 0's are A209638, complement A358725.
Positions of 1's are A358576, counted by A358587.
Other differences: A358580, A358726, A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
Sequence in context: A269248 A092078 A360071 * A325135 A263577 A343631
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 29 2022
STATUS
approved