login
A358722
Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 1, 1, 2, 2, 2, 2, ..., n, n, n, n] into k nonempty submultisets, for 1 <= k <= 4n.
4
1, 1, 2, 1, 1, 1, 12, 29, 32, 21, 10, 3, 1, 1, 62, 513, 1399, 1857, 1513, 855, 364, 119, 31, 6, 1, 1, 312, 8165, 55704, 155989, 231642, 215250, 139789, 68154, 26135, 8105, 2071, 435, 75, 10, 1, 1, 1562, 125121, 2076531, 12235869, 34100001, 53914814, 54898626, 39436580, 21332108, 9098469, 3160761, 914625, 223740, 46628, 8291, 1245, 155, 15, 1
OFFSET
0,3
COMMENTS
A generalization of ordinary Stirling set numbers to multisets that contain some m instances each of n elements, here we have m=4.
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
EXAMPLE
The triangular array starts:
[0]: 1
[1]: 1, 2, 1, 1;
[2]: 1, 12, 29, 32, 21, 10, 3, 1;
[3]: 1, 62, 513, 1399, 1857, 1513, 855, 364, 119, 31, 6, 1;
CROSSREFS
Cf. A008277, A358710, A358721, A358781 (row sums).
Sequence in context: A079834 A368811 A342458 * A256688 A372326 A029582
KEYWORD
nonn,tabf
AUTHOR
Marko Riedel, Nov 28 2022
STATUS
approved