login
Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 1, 2, 2, 2, ..., n, n, n] into k nonempty submultisets, for 1 <= k <= 3n.
4

%I #19 Dec 05 2022 06:26:15

%S 1,1,1,1,1,7,11,8,3,1,1,31,139,219,175,86,28,6,1,1,127,1547,5321,8004,

%T 6687,3579,1329,359,71,10,1,1,511,16171,118605,333887,472784,398771,

%U 223700,89640,26853,6171,1100,150,15,1,1,2047,164651,2511653,13045458,31207637,41429946,34621129,19882236,8342411,2668319,669446,134075,21591,2785,281,21,1

%N Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 1, 2, 2, 2, ..., n, n, n] into k nonempty submultisets, for 1 <= k <= 3n.

%C A generalization of ordinary Stirling set numbers to multisets that contain some m instances each of n elements, here we have m=3.

%D F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

%H Marko Riedel et al., <a href="https://math.stackexchange.com/questions/4585780/">Number of ways to partition a multiset into k non-empty multisets</a>, Mathematics Stack Exchange.

%H Marko Riedel, <a href="/A358721/a358721_1.maple.txt">Maple code for sequence by plain enumeration, the Polya Enumeration Theorem, and Power Group Enumeration</a>

%e The triangular array starts:

%e [0]: 1,

%e [1]: 1, 1, 1;

%e [2]: 1, 7, 11, 8, 3, 1;

%e [3]: 1, 31, 139, 219, 175, 86, 28, 6, 1;

%e [4]: 1, 127, 1547, 5321, 8004, 6687, 3579, 1329, 359, 71, 10, 1;

%Y Cf. A008277, A358710, A358722, A322487 (row sums).

%K nonn,tabf

%O 0,6

%A _Marko Riedel_, Nov 28 2022