OFFSET
1,1
FORMULA
{k | k is composite and A358235(k) = 1}.
EXAMPLE
16 has two nontrivial factorizations into two factors, 2*8 and 4*4. For both of these, the sums (2*A003415(8))+(A003415(2)+8) = 24+8 ("400" + "110") and (4*A003415(4))+(A003415(4)*4) = 16+16 ("220" + "220") generate carries in the primorial base (as 2 and 4 are the max. digits allowed in the second and third rightmost positions, see A049345), therefore 16 is included in this sequence.
PROG
(PARI) isA358675(n) = ((n>1)&&!isprime(n)&&(1==A358235(n)));
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A327936(n) = { my(f = factor(n)); for(k=1, #f~, f[k, 2] = (f[k, 2]>=f[k, 1])); factorback(f); };
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Nov 26 2022
STATUS
approved