login
A358592
Matula-Goebel numbers of rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.
14
18, 21, 60, 70, 78, 91, 92, 95, 102, 111, 119, 122, 129, 146, 151, 181, 201, 227, 264, 269, 308, 348, 376, 406, 418, 426, 452, 492, 497, 519, 551, 562, 574, 583, 596, 606, 659, 664, 668, 698, 707, 708, 717, 779, 794, 796, 809, 826, 834, 911, 932, 934, 942, 958
OFFSET
1,1
COMMENTS
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
FORMULA
A358552(a(n)) = A342507(a(n)) = A109129(a(n)).
EXAMPLE
The terms together with their corresponding rooted trees begin:
18: (o(o)(o))
21: ((o)(oo))
60: (oo(o)((o)))
70: (o((o))(oo))
78: (o(o)(o(o)))
91: ((oo)(o(o)))
92: (oo((o)(o)))
95: (((o))(ooo))
102: (o(o)((oo)))
111: ((o)(oo(o)))
119: ((oo)((oo)))
122: (o(o(o)(o)))
129: ((o)(o(oo)))
146: (o((o)(oo)))
151: ((oo(o)(o)))
181: ((o(o)(oo)))
201: ((o)((ooo)))
227: (((oo)(oo)))
MATHEMATICA
MGTree[n_]:=If[n==1, {}, MGTree/@Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Count[MGTree[#], _[__], {0, Infinity}]==Count[MGTree[#], {}, {0, Infinity}]==Depth[MGTree[#]]-1&]
CROSSREFS
Any number of leaves: A358576, counted by A358587 (ordered A358588).
Any number of internals: A358577, counted by A358589, ordered A358590.
Any height: A358578, ordered A358579, counted by A185650.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
Sequence in context: A293751 A090891 A303298 * A121851 A154151 A296008
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 25 2022
STATUS
approved