login
A358079
Primes that can be written as 2^x + p where p is a prime and x is a multiple of p.
2
11, 37, 67, 4099, 32771, 262147, 268435463, 1073741827, 36028797018963979, 18889465931478580854821, 151115727451828646838283, 19342813113834066795298819, 618970019642690137449562201, 316912650057057350374175801351, 85070591730234615865843651857942052871
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 67 is a term because 67 = 2^6 + 3 where 67 and 3 are prime and 6 is divisible by 3.
MAPLE
R:= NULL: count:= 0:
for k from 1 while count < 15 do
P:= sort(convert(numtheory:-factorset(k), list));
for p in P do
x:= 2^k+p;
if isprime(x) then R:= R, x; count:= count+1; fi
od od:R;
CROSSREFS
Contains A057664 and A228032.
Cf. A358087.
Sequence in context: A122728 A265767 A031381 * A160023 A263201 A337832
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 30 2022
STATUS
approved