login
A357995
Frobenius number for A = (n, n+1^2, n+2^2, n+3^2, ...) for n>=2.
2
1, 5, 11, 13, 11, 20, 31, 24, 27, 29, 43, 37, 49, 52, 63, 58, 69, 53, 75, 61, 65, 84, 95, 98, 85, 96, 107, 115, 88, 121, 127, 122, 130, 136, 139, 134, 145, 148, 159, 151, 154, 157, 171, 174, 169, 180, 191, 194, 178, 181, 203, 198, 201, 212, 223, 210, 221, 232, 235, 214
OFFSET
2,2
LINKS
Feihu Liu and Guoce Xin, On Frobenius Formulas of Power Sequences, arXiv:2210.02722 [math.CO], 2022. See Table 1 p. 26.
PROG
(Python)
def A357995(n):
a, b = set([0]), set(range(1, n**2))
for m in [n+k**2 for k in range(n+1)]:
d=m
while d < n**2:
c2 = set([x for x in b if x-d in a])
a |= c2 ; b -= c2 ; d*=2
return max(b) # Bert Dobbelaere, Oct 30 2022
KEYWORD
nonn
AUTHOR
Michel Marcus, Oct 23 2022
EXTENSIONS
More terms from Bert Dobbelaere, Oct 30 2022
STATUS
approved