login
A357978
Replace prime(k) with prime(A000009(k)) in the prime factorization of n.
6
1, 2, 2, 4, 3, 4, 3, 8, 4, 6, 5, 8, 7, 6, 6, 16, 11, 8, 13, 12, 6, 10, 19, 16, 9, 14, 8, 12, 29, 12, 37, 32, 10, 22, 9, 16, 47, 26, 14, 24, 61, 12, 79, 20, 12, 38, 103, 32, 9, 18, 22, 28, 131, 16, 15, 24, 26, 58, 163, 24, 199, 74, 12, 64, 21, 20, 251, 44, 38
OFFSET
1,2
COMMENTS
In the definition, taking A000009(k) instead of prime(A000009(k)) gives A357982.
EXAMPLE
We have 90 = prime(1) * prime(2)^2 * prime(3), so a(90) = prime(1) * prime(1)^2 * prime(2) = 24.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
mtf[f_][n_]:=Product[If[f[i]==0, 1, Prime[f[i]]], {i, primeMS[n]}];
Array[mtf[PartitionsQ], 100]
PROG
(PARI) f9(n) = polcoeff( prod( k=1, n, 1 + x^k, 1 + x * O(x^n)), n); \\ A000009
a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1] = prime(f9(primepi(f[k, 1])))); factorback(f); \\ Michel Marcus, Oct 25 2022
CROSSREFS
The non-strict version is A357977.
Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.
Sequence in context: A107331 A283187 A324391 * A087808 A217754 A319397
KEYWORD
nonn,mult
AUTHOR
Gus Wiseman, Oct 24 2022
STATUS
approved