# Some conjectural supercongruences for the Aperry numbers 

Peter Bala, Oct 272022

Let $\mathrm{A}(n)=\mathrm{A} 005259(\mathrm{n})$ and $\mathrm{B}(n)=\mathrm{A} 005258(\mathrm{n})$ denote the two types of Apéry numbers.

The sequences $\{\mathrm{A}(n)\}$ and $\{\mathrm{B}(n)\}$ together with the two sequences $\{\mathrm{A}(n-1)\}$ and $\{\mathrm{B}(n-1)\}$ of shifted Apéry numbers satisfy the supercongruences

$$
u\left(p^{r}\right) \equiv u\left(p^{r-1}\right)\left(\bmod p^{3 r}\right)
$$

valid for all primes $p>=5$ and all positive integers $r$ [see, for example, Straub]. The purpose of this note is to list several sequences formed from the Apéry numbers and the shifted Apéry numbers that empirically appear to satisfy the following stronger supercongruences

$$
u(p) \equiv u(1)\left(\bmod p^{5}\right) \text { for all primes } p>=5
$$

$$
\begin{equation*}
u\left(p^{r}\right) \equiv u\left(p^{r-1}\right)\left(\bmod p^{3 r+3}\right) \text { for } r>=2 \text { and all primes } p>=5 \tag{S}
\end{equation*}
$$

Note that to every linear combination $\{a \mathrm{U}(n)+b \mathrm{~V}(n)\}$ in the table below that conjecturally satisfies ( S ) there is associated a companion product sequence $\left\{\mathrm{U}(n)^{a \mathrm{U}(1)} \mathrm{V}(n)^{b \mathrm{~V}(1)}\right\}$ that also appears to satisfy (S).

Table of sequences $\{u(n)\}$ conjecturally satisfying (S)

|  | $u(n)$ | OEIS reference |
| :---: | :---: | :---: |
| $\mathrm{C} 1(\mathrm{a})$ | $\mathrm{A}(n)+7 \mathrm{~A}(n-1)$ | A 212334 |
|  |  |  |
| $\mathrm{C} 1(\mathrm{~b})$ | $\mathrm{A}(n)^{5} \mathrm{~A}(n-1)^{7}$ | A 357507 |
|  |  |  |
| $\mathrm{C} 2(\mathrm{a})$ | $\mathrm{B}(n)+\mathrm{B}(n-1)$ | A 352655 |
|  |  |  |
| $\mathrm{C} 2(\mathrm{~b})$ | $\mathrm{B}(n)^{3} \mathrm{~B}(n-1)$ | A 357506 |
| $\mathrm{C} 3(\mathrm{a})$ | $5 \mathrm{~A}(n)-14 \mathrm{~B}(n)$ | A 357567 |
|  |  |  |
| $\mathrm{C} 3(\mathrm{~b})$ | $\frac{\mathrm{A}(n)^{25}}{\mathrm{~B}(n)^{42}}$ | not listed |


|  | $u(n)$ | OEIS reference |
| :---: | :---: | :---: |
| $\mathrm{C} 4(\mathrm{a})$ | $5 \mathrm{~A}(n-1)-2 \mathrm{~B}(n-1)$ | A 357956 |
|  |  |  |
| $\mathrm{C} 4(\mathrm{~b})$ | $\mathrm{A}(n-1)^{5}-\mathrm{B}(n-1)^{2}$ | A 357957 |
|  |  |  |
| $\mathrm{C} 5(\mathrm{a})$ | $5 \mathrm{~A}(n)+14 \mathrm{~B}(n-1)$ | A 357958 |
|  |  |  |
| $\mathrm{C} 5(\mathrm{~b})$ | $\mathrm{A}(n)^{25} \mathrm{~B}(n-1)^{14}$ | not listed |
|  |  |  |
| $\mathrm{C} 6(\mathrm{a})$ | $5 \mathrm{~A}(n-1)+2 \mathrm{~B}(n)$ | A 357959 |
|  |  |  |
| $\mathrm{C} 6(\mathrm{~b})$ | $\mathrm{A}(n-1)^{5} B(n)^{6}$ | A 357960 |

## References

[1] Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions Algebra \& Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv:1401.0854 [math.NT], 2014.

