login
a(n) is the least k such that phi(k) + d(k) = 2^n, or -1 if there is no such k, where phi(k) = A000010(k) is Euler's totient function and d(k) = A000005(k) is the number of divisors of k.
1

%I #43 Jan 20 2023 21:44:00

%S 1,3,7,21,31,77,127,301,783,1133,3399,4781,8191,16637,37367,101601,

%T 131071,305837,524287,1073581,3220743,4201133,8544103,18404669,

%U 34012327,67139117,135255431,300528877,824583699,1073862029,2147483647,4295564381,8603449703,25807607829

%N a(n) is the least k such that phi(k) + d(k) = 2^n, or -1 if there is no such k, where phi(k) = A000010(k) is Euler's totient function and d(k) = A000005(k) is the number of divisors of k.

%C All primes in this sequence are primes of the form 2^n - 1. This is true because phi(p) = 2^n - 2 if p = 2^n - 1 is a Mersenne prime. - _Thomas Scheuerle_, Oct 19 2022

%C 274878976349 = a(38) < a(37) = 274881227398. - _Martin Ehrenstein_, Oct 24 2022

%C d(k) <= A070319(2^n). - _David A. Corneth_, Oct 25 2022

%H Max Alekseyev, <a href="/A357898/b357898.txt">Table of n, a(n) for n = 1..160</a> (a(35)..a(38) from Martin Ehrenstein; a(39)..a(49) from David A. Corneth)

%e a(3) = 7 because phi(7)+d(7) = 6+2 = 2^3, and 7 is the least number that works.

%p V:= Array(0..23): count:= 0:

%p for n from 1 while count < 23 do

%p s:= phi(n)+tau(n);

%p t:= padic:-ordp(s,2);

%p if V[t] = 0 and s = 2^t then

%p V[t]:= n; count:= count+1;

%p fi

%p od:

%p convert(V,list)[2..-1];

%Y Cf. A000005, A000010, A061468, A070319, A073757.

%K nonn

%O 1,2

%A _J. M. Bergot_ and _Robert Israel_, Oct 19 2022

%E a(27)-a(33) from _Giorgos Kalogeropoulos_, Oct 22 2022

%E a(34) from _Martin Ehrenstein_, Oct 24 2022