login
A357828
a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n,3*k)|.
3
1, 0, 0, 1, 6, 35, 226, 1645, 13454, 122661, 1236018, 13656951, 164290182, 2138379243, 29949509226, 449188719525, 7183702249542, 122039922034485, 2194928052851898, 41666342509646127, 832547791827455886, 17466905709043534107, 383908421683657311714
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(-log(1-x)).
a(n) = ( (1)_n + (w)_n + (w^2)_n )/3, where (x)_n is the Pochhammer symbol.
PROG
(PARI) a(n) = sum(k=0, n\3, abs(stirling(n, 3*k, 1)));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N\3, (-log(1-x))^(3*k)/(3*k)!)))
(PARI) Pochhammer(x, n) = prod(k=0, n-1, x+k);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Pochhammer(1, n)+Pochhammer(w, n)+Pochhammer(w^2, n))/3;
CROSSREFS
Cf. A003703.
Sequence in context: A081051 A145145 A367234 * A347002 A346945 A289383
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 14 2022
STATUS
approved