login
A357817
Partial alternating sums of the Dedekind psi function (A001615): a(n) = Sum_{k=1..n} (-1)^(k+1) * psi(k).
10
1, -2, 2, -4, 2, -10, -2, -14, -2, -20, -8, -32, -18, -42, -18, -42, -24, -60, -40, -76, -44, -80, -56, -104, -74, -116, -80, -128, -98, -170, -138, -186, -138, -192, -144, -216, -178, -238, -182, -254, -212, -308, -264, -336, -264, -336, -288, -384, -328, -418
OFFSET
1,2
LINKS
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
FORMULA
a(n) = -(3/(2*Pi^3)) * n^2 + O(n * log(n)^(2/3)) (Tóth, 2017).
MATHEMATICA
psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); psi[1] = 1; Accumulate[Array[(-1)^(# + 1)*psi[#] &, 50]]
PROG
(PARI) f(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
a(n) = sum(k=1, n, (-1)^(k+1) * f(k)); \\ Michel Marcus, Oct 15 2022
CROSSREFS
Similar sequences: A068762, A068773, A307704.
Sequence in context: A076078 A292786 A326486 * A053204 A152061 A103314
KEYWORD
sign
AUTHOR
Amiram Eldar, Oct 14 2022
STATUS
approved