Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 10 2022 14:33:58
%S 1,0,-32,-256,-2048,-12288,-32768,131072,3276800,28311552,125829120,
%T -285212672,-11274289152,-110326972416,-511101108224,2052994367488,
%U 66383014526976,707123415613440,4088396548931584,-1608585511436288,-341992096703447040,-4383726471663845376
%N a(n) = coefficient of x^(2*n) in C(x) defined by: C(x) + i*S(x) = Sum_{n=-oo..+oo} i^n * (2*x)^(n^2) * F(x)^n, where F(x) is the g.f. of A357787 such that C(x)^2 + S(x)^2 = 1.
%H Paul D. Hanna, <a href="/A357788/b357788.txt">Table of n, a(n) for n = 0..300</a>
%F Given g.f. C(x) = Sum_{n>=0} a(n)*x^(2*n) and related functions S(x) and F(x) (g.f. of A357787) satisfy the following.
%F (1) C(x)^2 + S(x)^2 = 1.
%F (2) C(x) + i*S(x) = Sum_{n=-oo..+oo} i^n * (2*x)^(n^2) * F(x)^n.
%F (3) 1/F(x) = F(-x).
%F (4) C(x) = 1 + Sum_{n>=1} (-1)^n * (2*x)^(4*n^2) * (F(x)^(2*n) + F(-x)^(2*n)).
%F (5) S(x) = Sum_{n>=0} (-1)^n * (2*x)^((2*n+1)^2) * (F(x)^(2*n+1) - F(-x)^(2*n+1)).
%F (6) C(x) + i*S(x) = Product_{n>=1} (1 + i*(2*x)^(2*n-1)*F(x)) * (1 - i*(2*x)^(2*n-1)/F(x)) * (1 - (2*x)^(2*n)), due to the Jacobi triple product identity.
%e G.f.: C(x) = 1 - 32*x^4 - 256*x^6 - 2048*x^8 - 12288*x^10 - 32768*x^12 + 131072*x^14 + 3276800*x^16 + 28311552*x^18 + 125829120*x^20 - 285212672*x^22 - 11274289152*x^24 - 110326972416*x^26 - 511101108224*x^28 + 2052994367488*x^30 + 66383014526976*x^32 + ...
%e such that C(x) and S(x) = sqrt(1 - C(x)^2) form the real and imaginary parts of the doubly infinite sum
%e C(x) + i*S(x) = Sum_{n=-oo..+oo} i^n * (2*x)^(n^2) * F(x)^n
%e where F(x) is the g.f. of A357787 and normalizes the given theta series so that C(x)^2 + S(x)^2 = 1.
%e Explicitly,
%e C(x) = 1 - (2*x)^4*(F(x)^2 + F(-x)^2) + (2*x)^16*(F(x)^4 + F(-x)^4) - (2*x)^36*(F(x)^6 + F(-x)^6) + (2*x)^64*(F(x)^8 + F(-x)^8) + ... + (-1)^n * (2*x)^(4*n^2) * (F(x)^(2*n) + F(-x)^(2*n)) + ...
%e S(x) = (2*x)*(F(x) - F(-x)) - (2*x)^9*(F(x)^3 - F(-x)^3) + (2*x)^25*(F(x)^5 - F(-x)^5) - (2*x)^49*(F(x)^7 - F(-x)^7) + ... + (-1)^n * (2*x)^((2*n+1)^2) * (F(x)^(2*n+1) - F(-x)^(2*n+1)) + ...
%e where
%e F(x) = 1 + 2*x + 2*x^2 + 8*x^3 + 14*x^4 + 32*x^5 + 68*x^6 + 22*x^8 - 768*x^9 - 2020*x^10 - 9216*x^11 - 23156*x^12 - 45056*x^13 - 115320*x^14 + 32768*x^15 + ... + A357787(n) * x^n + ...
%e S(x) = 8*x^2 + 32*x^4 + 128*x^6 - 9216*x^10 - 94208*x^12 - 671744*x^14 - 3014656*x^16 + 1245184*x^18 + 171704320*x^20 + 1756364800*x^22 + 8338276352*x^24 + ... + A357789(n)*x^(2*n) + ...
%e RELATED SERIES.
%e C(x)^2 = 1 - 64*x^4 - 512*x^6 - 3072*x^8 - 8192*x^10 + 131072*x^12 + 2097152*x^14 + 19136512*x^16 + 115343360*x^18 + 260046848*x^20 - 3791650816*x^22 - 60666413056*x^24 - 471909531648*x^26 - 1563368095744*x^28 + ...
%e The logarithm of C(x) + i*S(x) is an imaginary even function that begins:
%e log(C(x) + i*S(x)) = i*(16*x^2/2 + 128*x^4/4 + 1280*x^6/6 + 8192*x^8/8 + 14336*x^10/10 - 81920*x^12/12 - 2129920*x^14/14 - 12582912*x^16/16 + 36044800*x^18/18 + 1722810368*x^20/20 + 20768096256*x^22/22 + ...)
%e because C(x)^2 + S(x)^2 = 1.
%e Also observe that the following roots of C(x) + i*S(x) are integer series:
%e (C(x) + i*S(x))^(1/2) = 1 + 4*i*x^2 + (-8 + 16*i)*x^4 + (-64 + 96*i)*x^6 + (-544 + 384*i)*x^8 + (-3584 - 640*i)*x^10 + (-14592 - 14848*i)*x^12 + (-30720 - 148480*i)*x^14 + (325120 - 757760*i)*x^16 + (3948544 + 104448*i)*x^18 + (17731584 + 47472640*i)*x^20 + (-87916544 + 533676032*i)*x^22 + ...
%e (C(x) + i*S(x))^(1/4) = 1 + 2*i*x^2 + (-2 + 8*i)*x^4 + (-16 + 52*i)*x^6 + (-138 + 240*i)*x^8 + (-928 + 188*i)*x^10 + (-4052 - 3152*i)*x^12 + (-11744 - 47320*i)*x^14 + (48806 - 244896*i)*x^16 + (770752 + 362860*i)*x^18 + (3352836 + 21880112*i)*x^20 + (-25037664 + 242360920*i)*x^22 + ...
%o (PARI) {a(n) = my(F=[1,2],THETA=1); for(i=1,2*n, F = concat(F,0); m=sqrtint(#F+9);
%o THETA = sum(n=-m,m, I^n * (2*x)^(n^2) * truncate(Ser(F))^n + x*O(x^(#F+2)));
%o F[#F] = -polcoeff( (real(THETA)^2 + imag(THETA)^2)/64, #F+2)); polcoeff(real(THETA),2*n)}
%o for(n=0,25,print1(a(n),", "))
%Y Cf. A357787, A357789, A357806.
%K sign
%O 0,3
%A _Paul D. Hanna_, Dec 05 2022