login
A357786
a(n) = coefficient of x^n, n >= 1, in A(x) such that: A(x)^2 = A( x^2/(1 - 4*x - 8*x^2) ) * sqrt(1 - 4*x - 8*x^2).
2
1, 1, 5, 20, 98, 483, 2499, 13182, 71030, 388484, 2152982, 12061840, 68212585, 388886050, 2232764700, 12898728750, 74923372563, 437303591874, 2563373794884, 15083551143318, 89060360731377, 527477003037984, 3132774700791126, 18652891302520806, 111314950683514698
OFFSET
1,3
COMMENTS
Self convolution equals A357548.
Radius of convergence is r = (sqrt(57) - 5)/16, where r = r^2/(1 - 4*r - 8*r^2), with A(r) = sqrt(r).
Related identities:
(1) F(x)^2 = F( x^2/(1 - 4*x + 6*x^2) ) when F(x) = x/(1-2*x).
(2) C(x)^2 = C( x^2/(1 - 4*x + 4*x^2) ) when C(x) = (1-2*x - sqrt(1-4*x))/(2*x) is a g.f. of the Catalan numbers (A000108).
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A(x) = -A( -x/(1 - 4*x) ) * sqrt(1 - 4*x).
(2) A(x)^2 = A( x^2/(1 - 4*x - 8*x^2) ) * sqrt(1 - 4*x - 8*x^2).
(3) A( x/(1 + 2*x) )^2 = A( x^2/(1 - 12*x^2) ) * sqrt(1 - 12*x^2) / (1 + 2*x).
(4) A( x/(1 + 2*x + 8*x^2) )^2 = A( x^2/(1 + 2^2*x^2 + 8^2*x^4) ) * sqrt(1 + 2^2*x^2 + 8^2*x^4) / (1 + 2*x + 8*x^2).
EXAMPLE
G.f.: A(x) = x + x^2 + 5*x^3 + 20*x^4 + 98*x^5 + 483*x^6 + 2499*x^7 + 13182*x^8 + 71030*x^9 + 388484*x^10 + 2152982*x^11 + ...
such that
A(x)^2 = A( x^2/(1 - 4*x - 8*x^2) ) * sqrt(1 - 4*x - 8*x^2)
where
A(x)^2 = x^2 + 2*x^3 + 11*x^4 + 50*x^5 + 261*x^6 + 1362*x^7 + 7344*x^8 + 40112*x^9 + 222338*x^10 + ... + A357548(n)*x^(n+1) + ...
PROG
(PARI) {a(n) = my(A=x); for(i=1, #binary(n+1),
A = sqrt( subst(A, x, x^2/(1 - 4*x - 8*x^2 +x*O(x^n)) )*sqrt(1 - 4*x - 8*x^2 +x*O(x^n)) )
); polcoeff(H=A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A002745 A182959 A224661 * A020046 A319731 A372006
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 03 2022
STATUS
approved