OFFSET
1,2
LINKS
Yasuaki Gyoda, Positive integer solutions to (x+y)^2+(y+z)^2+(z+x)^2=12xyz, arXiv:2109.09639 [math.NT], 2022.
EXAMPLE
The first few solutions are (x, y, z) = (1, 1, 1), (1, 1, 3), (1, 3, 13), (1, 13, 61), (1, 61, 291), (1, 291, 1393), (1, 1393, 6673), (1, 6673, 31971), (3, 13, 217), (3, 217, 3673), ..., so 1, 3, 13, 61, 217, 291, ... are terms.
PROG
(PARI) a357749(steps) = {L=List(); listput(L, [1, 1, 1]); listput(L, [1, 1, 3]); listput(L, [1, 13, 3]); for(n=1, steps, my(mp, mv); for(l=1, #L, mv=vecmax(L[l], &mp); my (a=L[l][1], b=L[l][2], c=L[l][3], s=a+b+c); if(mp==1, listput(L, [a, 6*a*c-s, c]); listput(L, [a, b, 6*a*b-s])); if(mp==2, listput(L, [6*b*c-s, b, c]); listput(L, [a, b, 6*a*b-s])); if(mp==3, listput(L, [6*b*c-s, b, c]); listput(L, [a, 6*a*c-s, c])))); M=List(); for (k=1, #L, for(j=1, 3, listput(M, L[k][j]))); vecsort(M, , 8)};
a357749(13)[1..35]
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Oct 18 2022
STATUS
approved