OFFSET
1,2
COMMENTS
We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The terms together with their prime indices begin:
1: {}
4: {1,1}
9: {2,2}
12: {1,1,2}
16: {1,1,1,1}
25: {3,3}
30: {1,2,3}
36: {1,1,2,2}
49: {4,4}
63: {2,2,4}
64: {1,1,1,1,1,1}
70: {1,3,4}
81: {2,2,2,2}
90: {1,2,2,3}
100: {1,1,3,3}
108: {1,1,2,2,2}
121: {5,5}
144: {1,1,1,1,2,2}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]), {i, Length[f]}];
Select[Range[1000], skats[Reverse[primeMS[#]]]==0&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 09 2022
STATUS
approved