OFFSET
0,2
COMMENTS
Let m be a nonnegative integer and set u(n) = the numerator of Sum_{k = 0..n} 1/k^(2*m+1) * binomial(n,k)^2 * binomial(n+k,k)^2. We conjecture that u(p-1) == 0 (mod p^4) for all primes p, with a finite number of exceptions that depend on m.
LINKS
A. Straub, Multivariate Apéry numbers and supercongruences of rational functions, arXiv:1401.0854 [math.NT] (2014).
FORMULA
Conjecture: a(p-1) == 0 (mod p^4) for all primes p >= 3 except p = 7 (checked up to p = 499).
Note: the Apery numbers A(n) = A005259(n) = Sum_{k = 0..n} binomial(n,k)^2 * binomial(n+k,k)^2 satisfy the supercongruence A(p-1) == 1 (mod p^3) for all primes p >= 5 (see, for example, Straub, Introduction).
EXAMPLE
a(11 - 1) = 172296487023049395523 = (11^4)*(43^2)*6163*1032705769 == 0 (mod 11^4).
MAPLE
seq(numer(add( (1/k^3) * binomial(n, k)^2 * binomial(n+k, k)^2, k = 1..n )), n = 0..20);
PROG
(PARI) a(n) = if (n, numerator(sum(k=1, n, binomial(n, k)^2*binomial(n+k, k)^2/k^3)), 0); \\ Michel Marcus, Oct 04 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 02 2022
STATUS
approved