login
A357454
Number of partitions of n into pentanacci numbers 1,2,4,8,16,31, ... (A001591).
2
1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 36, 36, 46, 46, 60, 60, 74, 74, 94, 94, 114, 114, 140, 140, 166, 167, 202, 203, 238, 240, 284, 286, 330, 334, 390, 394, 450, 456, 524, 530, 598, 608, 692, 702, 786, 800, 900, 914, 1014, 1034
OFFSET
0,3
FORMULA
G.f.: Product_{k>=5} 1 / (1 - x^A001591(k)).
MATHEMATICA
A001591[0] = A001591[1] = A001591[2] = A001591[3] = 0; A001591[4] = 1; A001591[n_] := A001591[n] = A001591[n - 1] + A001591[n - 2] + A001591[n - 3] + A001591[n - 4] + A001591[n - 5]; nmax = 55; CoefficientList[Series[Product[1/(1 - x^A001591[k]), {k, 5, 20}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 29 2022
STATUS
approved