login
A357452
Number of partitions of n into tetranacci numbers 1,2,4,8,15,29, ... (A000078).
2
1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 27, 36, 37, 46, 48, 60, 62, 74, 78, 94, 98, 114, 120, 140, 147, 168, 178, 204, 215, 242, 256, 288, 304, 338, 358, 398, 420, 462, 488, 537, 567, 619, 654, 714, 753, 816, 860, 932, 982, 1058, 1114
OFFSET
0,3
FORMULA
G.f.: Product_{k>=4} 1 / (1 - x^A000078(k)).
MATHEMATICA
A000078[0] = A000078[1] = A000078[2] = 0; A000078[3] = 1; A000078[n_] := A000078[n] = A000078[n - 1] + A000078[n - 2] + A000078[n - 3] + A000078[n - 4]; nmax = 55; CoefficientList[Series[Product[1/(1 - x^A000078[k]), {k, 4, 20}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 29 2022
STATUS
approved