login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of Product_{k>=1} 1 / (1 + x^Fibonacci(k)).
1

%I #4 Sep 26 2022 20:17:50

%S 1,-2,2,-3,5,-7,9,-11,13,-16,20,-23,26,-31,36,-41,48,-55,62,-71,81,

%T -92,104,-116,129,-145,163,-180,198,-219,242,-267,293,-320,349,-381,

%U 416,-452,489,-529,572,-618,668,-719,771,-829,892,-956,1023,-1094,1167,-1246,1331,-1416,1504

%N Expansion of Product_{k>=1} 1 / (1 + x^Fibonacci(k)).

%C Convolution inverse of A000121.

%t nmax = 54; CoefficientList[Series[Product[1/(1 + x^Fibonacci[k]), {k, 1, 21}], {x, 0, nmax}], x]

%Y Cf. A000045, A000121, A298949, A357380.

%K sign

%O 0,2

%A _Ilya Gutkovskiy_, Sep 26 2022