login
A357265
Expansion of e.g.f. -LambertW(x * log(1-x)).
6
0, 0, 2, 3, 32, 150, 1884, 16380, 249808, 3255336, 59596560, 1037413080, 22432698144, 486784686960, 12233449250736, 316660035739320, 9111729094222080, 273147758526888000, 8880267446524694016, 301952732236006556160, 10963551960785051470080
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=1..floor(n/2)} k^(k-1) * |Stirling1(n-k,k)|/(n-k)!.
PROG
(PARI) my(N=20, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(-lambertw(x*log(1-x)))))
(PARI) a(n) = n!*sum(k=1, n\2, k^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 21 2022
STATUS
approved