login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

E.g.f. satisfies A(x) * log(A(x)) = x * exp(-x).
7

%I #27 Mar 04 2024 08:04:45

%S 1,1,-3,13,-103,1241,-19691,384805,-8918351,238966705,-7265920339,

%T 247123552061,-9295263915191,383095792217737,-17167554097899323,

%U 831082449069928021,-43221681697593767071,2403219105771778162529,-142263939562414917333155

%N E.g.f. satisfies A(x) * log(A(x)) = x * exp(-x).

%H Seiichi Manyama, <a href="/A357247/b357247.txt">Table of n, a(n) for n = 0..372</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.

%F E.g.f. satisfies A(x) * log(A(x)) - x * exp(-x) = 0.

%F E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (x * exp(-x))^k / k!.

%F E.g.f.: A(x) = exp( LambertW(x * exp(-x)) ).

%F E.g.f.: A(x) = x * exp(-x)/LambertW(x * exp(-x)).

%F a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * A216857(k) * binomial(n-1,k-1) * a(n-k).

%F a(n) = (-1)^(n - 1) * Sum_{j=0..n} binomial(n, j) * (j - 1)^(j - 1) * j^(n - j). - _Peter Luschny_, Jan 28 2023

%F a(n) ~ -(-1)^n * sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (exp(n+1) * LambertW(exp(-1))^n). - _Vaclav Kotesovec_, Jan 28 2023

%p A357247 := n -> (-1)^(n - 1) * add(binomial(n, j) * (j - 1)^(j - 1) * j^(n - j), j = 0..n): seq(A357247(n), n = 0..18); # _Peter Luschny_, Jan 28 2023

%t nmax = 20; A[_] = 1;

%t Do[A[x_] = Exp[x/(Exp[x]*A[x])] + O[x]^(nmax+1) // Normal, {nmax}];

%t CoefficientList[A[x], x]*Range[0, nmax]! (* _Jean-François Alcover_, Mar 04 2024 *)

%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(x*exp(-x))^k/k!)))

%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x*exp(-x)))))

%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(x*exp(-x)/lambertw(x*exp(-x))))

%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=1, j, (-k)^(j-1)*binomial(j, k))*binomial(i-1, j-1)*v[i-j+1])); v;

%Y Cf. A177885, A216857, A357243, A357246, A359759 (column 1).

%K sign

%O 0,3

%A _Seiichi Manyama_, Sep 19 2022