login
A357245
E.g.f. satisfies A(x) * log(A(x)) = 3 * (exp(x) - 1).
1
1, 3, -6, 84, -1599, 42906, -1477716, 62171661, -3090518556, 177237143040, -11518529575857, 836601742598628, -67156626492464064, 5904119985344031639, -564188922815428792914, 58225175660113940932032, -6453955474121138652732903, 764716767229825444834522086
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} 3^k * (-k+1)^(k-1) * Stirling2(n,k).
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (3 * (exp(x) - 1))^k / k!.
E.g.f.: A(x) = exp( LambertW(3 * (exp(x) - 1)) ).
E.g.f.: A(x) = 3 * (exp(x) - 1)/LambertW(3 * (exp(x) - 1)).
MATHEMATICA
nmax = 17; A[_] = 1;
Do[A[x_] = Exp[(3*(Exp[x] - 1))/A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, 3^k*(-k+1)^(k-1)*stirling(n, k, 2));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(3*(exp(x)-1))^k/k!)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(3*(exp(x)-1)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(3*(exp(x)-1)/lambertw(3*(exp(x)-1))))
CROSSREFS
Sequence in context: A349875 A376934 A331403 * A157197 A363410 A211896
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 19 2022
STATUS
approved