login
A357157
Coefficients in the power series expansion of A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/24 * x^(4*n) * (1 - x^n)^(n-2).
4
1, 1, 1, 1, 7, 1, 1, 1, 22, 1, 1, -19, 57, 1, 1, 1, 22, 1, 1, 1, 303, -349, 1, 1, 463, 1, -593, 1, 793, 1, 1, -2204, 2584, 1, 1, 1, -2287, 1, 3082, 1, 3004, -8084, 1, 1, 14465, -3674, -14299, 1, 6189, 1, 22276, -24023, -2056, 1, 1, 1, 18714, 1, 1, -34985, 24305, -60059, 87517, 1, 20350
OFFSET
4,5
COMMENTS
Related identities:
(I.1) 0 = Sum_{n=-oo..+oo} n * x^n * (1 - x^n)^(n-1).
(I.2) 0 = Sum_{n=-oo..+oo} n*(n+1)/2 * x^(2*n) * (1 - x^n)^(n-1).
(I.3) 0 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)/3! * x^(3*n) * (1 - x^n)^(n-1).
(I.4) 0 = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/4! * x^(4*n) * (1 - x^n)^(n-1).
(I.5) 0 = Sum_{n=-oo..+oo} binomial(n+k-1, k) * x^(k*n) * (1 - x^n)^(n-1) for fixed positive integer k.
(I.6) 0 = Sum_{n=-oo..+oo} (-1)^n * n * x^(n^2) / (1 - x^n)^(n+1).
(I.7) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)/2 * x^(n*(n+1)) / (1 - x^(n+1))^(n+2).
(I.8) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)*(n+2)/3! * x^(n*(n+2)) / (1 - x^(n+2))^(n+3).
(I.9) 0 = Sum_{n=-oo..+oo} (-1)^n * n*(n+1)*(n+2)*(n+3)/4! * x^(n*(n+3)) / (1 - x^(n+3))^(n+4).
(I.10) 0 = Sum_{n=-oo..+oo} (-1)^n * binomial(n+k-1, k) * x^(n*(n+k-1)) / (1 - x^(n+k-1))^(n+k) for fixed positive integer k.
(I.11) 0 = Sum_{n=-oo..+oo} (n-1)*n*(n+1)*(n+2)*(n+3)/120 * x^(4*n) * (1 - x^n)^(n-2).
(I.12) 0 = Sum_{n=-oo..+oo} (-1)^n * (n+1)*n*(n-1)*(n-2)*(n-3)/120 * x^(n*(n-2)) / (1 - x^n)^(n+2).
LINKS
FORMULA
G.f. A(x) = Sum_{n>=4} a(n)*x^n satisfies:
(1) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/24 * x^(4*n) * (1 - x^n)^(n-2).
(2) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)/24 * x^(5*n) * (1 - x^n)^(n-2).
(3) A(x) = Sum_{n=-oo..+oo} n*(n+1)*(n+2)*(n+3)*(n+4)/120 * x^(4*n) * (1 - x^n)^(n-2).
(4) A(x) = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)*(n-2)*(n-3)/24 * x^(n*(n-3)) / (1 - x^n)^(n+2).
(5) A(x) = Sum_{n=-oo..+oo} (-1)^n * n*(n-1)*(n-2)*(n-3)/24 * x^(n*(n-2)) / (1 - x^n)^(n+2).
(6) A(x) = Sum_{n=-oo..+oo} -(-1)^n * n*(n-1)*(n-2)*(n-3)*(n-4)/120 * x^(n*(n-2)) / (1 - x^n)^(n+2).
EXAMPLE
G.f.: A(x) = x^4 + x^5 + x^6 + x^7 + 7*x^8 + x^9 + x^10 + x^11 + 22*x^12 + x^13 + x^14 - 19*x^15 + 57*x^16 + x^17 + x^18 + x^19 + 22*x^20 + ...
where
A(x) = ... + 5*x^(-20)*(1 - x^(-5))^(-7) + 1*x^(-16)*(1 - x^(-4))^(-6) + 0*x^(-12) + 0*x^(-8) + 0*x^(-4) + 0 + 1*x^4/(1-x) + 5*x^8 + 15*x^12*(1 - x^3) + 35*x^16*(1 - x^4)^2 + 70*x^20*(1 - x^5)^3 + ... + n*(n+1)*(n+2)*(n+3)/24 * x^(4*n)*(1 - x^n)^(n-2) + ...
PROG
(PARI) {a(n) = my(A = sum(m=-n-1, n+1, if(m==0, 0, m*(m+1)*(m+2)*(m+3)/24 * x^(4*m) * (1 - x^m +x*O(x^n))^(m-2) )) );
polcoeff(A, n)}
for(n=4, 100, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 22 2022
STATUS
approved