%I #10 Sep 17 2022 09:53:42
%S 1,2,3,4,5,7,8,9,10,11,15,16,17,19,23,31,32,33,34,35,36,37,39,42,43,
%T 45,47,63,64,65,67,69,71,75,79,95,127,128,129,130,131,133,135,136,137,
%U 138,139,141,143,147,151,153,155,159,170,171,175,187,191,255,256
%N Numbers k that are the smallest of all numbers that are cyclically equivalent to k.
%C For the definition of cyclic equivalence, see A357005, or Hladnik, Marušič, and Pisanski (2002).
%C The sequence consists of the fixed points of A357005.
%C The number of terms k in the interval 2^(m-1) <= k < 2^m equals A002729(m)-1.
%H Pontus von Brömssen, <a href="/A357006/b357006.txt">Table of n, a(n) for n = 1..10000</a>
%H Milan Hladnik, Dragan Marušič, and Tomaž Pisanski, <a href="https://doi.org/10.1016/S0012-365X(01)00064-4">Cyclic Haar graphs</a>, Discrete Mathematics 244 (2002), 137-152.
%Y Cf. A002729, A137706 (subsequence), subsequence of A333764, A357005.
%K nonn
%O 1,2
%A _Pontus von Brömssen_, Sep 08 2022