%I #29 Sep 11 2022 19:00:58
%S 137,187,321,917,1098,1346,1347,1349,1362,1367,1384,1395,1528,1583,
%T 1850,1859,1876,1973,2415,2490,2517,2631,2632,2970,3417,3529,3573,
%U 3575,3590,3598,3751,3785,3860,4301,4537,4591,4639,4927,4980,4983,5231,5319,5342,5790,6106,6107
%N Numbers k such that prime(k) can be written using only the digits of k (but they may used multiple times).
%C The digits of k can be reused. In other words, the distinct digits of prime(k) form a subset of the set of the distinct digits of k.
%C This sequence is infinite as every pandigital number is in this sequence, see A171102.
%e The 137th prime number is 773, which can be written with the digits of 137. Thus 137 is in this sequence.
%t Select[Range[10000], SubsetQ[Sort[IntegerDigits[#]], Sort[IntegerDigits[Prime[#]]]] &]
%o (Python)
%o from sympy import nextprime
%o from itertools import count, islice
%o def agen(): # generator of terms
%o pk = 2
%o for k in count(1):
%o if set(str(pk)) <= set(str(k)): yield k
%o pk = nextprime(pk)
%o print(list(islice(agen(), 46))) # _Michael S. Branicky_, Sep 09 2022
%Y Cf. A171102, A080794.
%K nonn,base
%O 1,1
%A _Tanya Khovanova_, Sep 09 2022