

A356945


Number of multiset partitions of the prime indices of n such that each block covers an initial interval. Number of factorizations of n into members of A055932.


5



1, 1, 0, 2, 0, 1, 0, 3, 0, 0, 0, 2, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 1, 0, 7, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.


LINKS

Table of n, a(n) for n=1..87.
Gus Wiseman, Counting and ranking classes of multiset partitions related to gapless multisets


EXAMPLE

The a{n} multiset partitions for n = 8, 24, 72, 96:
{{111}} {{1112}} {{11122}} {{111112}}
{{1}{11}} {{1}{112}} {{1}{1122}} {{1}{11112}}
{{1}{1}{1}} {{11}{12}} {{11}{122}} {{11}{1112}}
{{1}{1}{12}} {{12}{112}} {{111}{112}}
{{1}{1}{122}} {{12}{1111}}
{{1}{12}{12}} {{1}{1}{1112}}
{{1}{11}{112}}
{{11}{11}{12}}
{{1}{12}{111}}
{{1}{1}{1}{112}}
{{1}{1}{11}{12}}
{{1}{1}{1}{1}{12}}


MATHEMATICA

facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
nnQ[m_]:=PrimePi/@First/@FactorInteger[m]==Range[PrimePi[Max@@First/@FactorInteger[m]]];
Table[Length[Select[facs[n], And@@nnQ/@#&]], {n, 100}]


CROSSREFS

Positions of 0's are A080259, complement A055932.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, with sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A356069 counts gapless divisors, initial A356224 (complement A356225).
Multisets covering an initial interval are counted by A000009, A000041, A011782, ranked by A055932.
Other types: A034691, A089259, A356954, A356955.
Other conditions: A050320, A050330, A322585, A356233, A356931, A356936.
Cf. A003963, A073491, A107742, A287170, A324929, A340852, A356234.
Sequence in context: A331594 A093057 A065334 * A162590 A276424 A346070
Adjacent sequences: A356942 A356943 A356944 * A356946 A356947 A356948


KEYWORD

nonn


AUTHOR

Gus Wiseman, Sep 08 2022


STATUS

approved



