login
a(n) = (n^2 + 3*n + 10/3)*4^(n-3) - 1/3.
0

%I #22 Jan 07 2024 13:34:06

%S 3,21,125,693,3669,18773,93525,456021,2184533,10310997,48059733,

%T 221599061,1012225365,4585772373,20624790869,92162839893,409453548885,

%U 1809612887381,7960006055253,34863681197397,152099108509013,661172992169301,2864594294232405,12373170851239253

%N a(n) = (n^2 + 3*n + 10/3)*4^(n-3) - 1/3.

%C a(n) is the number of fixed polyforms of minimal area (2*n)-1 that contain at least one triangle that touches each side of a triangle formed on a Kagome (trihexagonal) lattice. n is the number of triangles that touch each side of the larger triangle.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (13,-60,112,-64).

%F G.f.: x^2*(3 - 18*x + 32*x^2 - 8*x^3)/((1 - x)*(1 - 4*x)^3). - adapted to the offset by _Stefano Spezia_, Sep 03 2022

%F From _Stefano Spezia_, Sep 03 2022: (Start)

%F a(n) = (4^n*(10 + 3*n*(3 + n)) - 64)/192.

%F a(n) = 13*a(n-1) - 60*a(n-2) + 112*a(n-3) - 64*a(n-4) for n > 5. (End)

%e a(3) = 21. Up to rotations and reflections, there are 5 possibilities:

%e .

%e * * *

%e / \ / \ / \

%e *---* *---* *---*

%e / \ / \ / \

%e * * * * * *

%e / \ / \ / \ / \ / \ /#\

%e *---*---*---* *---*---*---* *---*---*---*

%e /#####\ /#####\ /#####\#/#####\ /#####\ /#####\

%e *#######*#######* *#######*#######* *#######*#######*

%e /#\#####/#\#####/#\ /#\#####/ \#####/#\ /#\#####/#\#####/ \

%e *---*---*---*---*---* *---*---*---*---*---* *---*---*---*---*---*

%e .

%e * *

%e / \ / \

%e *---* *---*

%e / \ / \

%e * * * *

%e /#\ /#\ / \ /#\

%e *---*---*---* *---*---*---*

%e /#####\ /#####\ /#####\#/#####\

%e *#######*#######* *#######*#######*

%e / \#####/#\#####/ \ /#\#####/ \#####/ \

%e *---*---*---*---*---* *---*---*---*---*---*

%t Table[(n^2 + 3*n + 10/3)*4^(n-3) - 1/3, {n,2,25}] (* _James C. McMahon_, Jan 03 2024 *)

%Y Cf. A334551.

%K nonn,easy

%O 2,1

%A _Jack Hanke_, Sep 02 2022