%I #18 Nov 06 2022 08:58:24
%S 1,12,102,812,6402,50412,396902,3124812,24601602,193688012,1524902502,
%T 12005532012,94519353602,744149296812,5858675020902,46125250870412,
%U 363143331942402,2859021404668812,22509027905408102,177213201838596012,1395196586803360002,10984359492588284012
%N Coordination sequence of the {5,3,4} hyperbolic honeycomb.
%C a(n) is the number of cells n steps from an (arbitrarily chosen) central cell in the {5,3,4} honeycomb.
%H Dorota Celińska-Kopczyńska and Eryk Kopczyński, <a href="https://arxiv.org/abs/2208.13816">Generating Regular Hyperbolic Honeycombs</a>, arXiv:2208.13816 [cs.CG], 2022.
%F It appears thata(n) = 10*A095004(n) + 2. - _Hugo Pfoertner_, Aug 30 2022
%e Each dodecahedral cell has 12 neighbors, so a(1) = 12.
%Y Cf. A076765, A095004, A356835.
%K nonn
%O 0,2
%A _Eryk Kopczynski_, Aug 31 2022