%I #48 May 26 2023 14:10:04
%S 2,4,6,7,9,11,11,13,15,17,16,18,20,22,24,22,24,26,28,30,32,29,31,33,
%T 35,37,39,41,37,39,41,43,45,47,49,51,46,48,50,52,54,56,58,60,62,56,58,
%U 60,62,64,66,68,70,72,74,67,69,71,73,75,77,79,81,83,85,87
%N Triangle read by rows: T(n,k) = ((n-1)*(n+2))/2 + 2*k.
%C The first column of the triangle is the Lazy Caterer's sequence A000124.
%C Each subsequent column starts with A000124(n) + (2 * (n-1)).
%C The first downward diagonal is A046691(n).
%C Columns and downward diagonals of the triangle identify many sequences (possibly shifted) in the database. Examples can be found in crossrefs below.
%C The sum of the n-th upward diagonal of the triangle is A356288(n).
%F T(n,k) = ((n-1) * (n+2))/2 + 2*k.
%F T(n,k+1) = T(n,k) + 2, k < n.
%e Triangle T(n,k) begins:
%e n\k 1 2 3 4 5 6 7 8 9 10 11 ...
%e 1: 2
%e 2: 4 6
%e 3: 7 9 11
%e 4: 11 13 15 17
%e 5: 16 18 20 22 24
%e 6: 22 24 26 28 30 32
%e 7: 29 31 33 35 37 39 41
%e 8: 37 39 41 43 45 47 49 51
%e 9: 46 48 50 52 54 56 58 60 62
%e 10: 56 58 60 62 64 66 68 70 72 74
%e 11: 67 69 71 73 75 77 79 81 83 85 87
%e ...
%t Table[((n-1)(n+2))/2+2k,{n,20},{k,n}]//Flatten (* _Harvey P. Dale_, May 26 2023 *)
%o (Python)
%o def T(n, k): return ((n-1) * (n+2))//2 + 2*k
%o for n in range(1, 12):
%o for k in range(1,(n+1)): print(T(n,k), end = ', ')
%o (Python)
%o # Indexed as a linear sequence.
%o def a000124(n): return n*(n+1)//2 + 1
%o def a(n):
%o l = m = 0
%o for k in range(1,n):
%o lc = a000124(k - 1)
%o if n >= lc:
%o l = lc
%o m = k
%o else: break
%o return n + m + (n - l)
%Y Cf. A000124, A004120, A046691, A051938, A055999, A056000, A155212, A167487, A167499, A167614, A246172, A334563, A356288.
%K nonn,tabl,easy
%O 1,1
%A _Torlach Rush_, Aug 25 2022