OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=0..floor(n/4)} (k+1)^(k-1) * |Stirling1(n-3*k,k)|/(6^k * (n-3*k)!).
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (-x^3/6 * log(1-x))^k / k!.
E.g.f.: A(x) = exp( -LambertW(x^3/6 * log(1-x)) ).
E.g.f.: A(x) = LambertW(x^3/6 * log(1-x))/(x^3/6 * log(1-x)).
MATHEMATICA
nmax = 23; A[_] = 1;
Do[A[x_] = 1/(1 - x)^(x^3/6*A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
PROG
(PARI) a(n) = n!*sum(k=0, n\4, (k+1)^(k-1)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!));
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(-x^3/6*log(1-x))^k/k!)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(x^3/6*log(1-x)))))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x^3/6*log(1-x))/(x^3/6*log(1-x))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 03 2022
STATUS
approved