login
A356645
a(n) = tau(n)^2 - 4*n^11 where tau is Ramanujan's tau function A000594.
0
-3, -7616, -645084, -14610432, -171983600, -1414609920, -7628945436, -27222867968, -112609506987, -386562553600, -855436691900, -2834434031616, -6834860379504, -16036772433920, -33117544971900, -69394306695168, -89395660818176, -249634755002304, -352295159176476, -768651312742400
OFFSET
1,1
LINKS
Guillaume Duval, Théorème de Chebotarev et Congruences de suites récurrentes linéaires, liens avec les algorithmes de factorisations sur Fp, arXiv:2208.08899 [math.NT], 2022. See Corollaire 20 p. 12. In French.
J. P. Serre, An interpretation of some congruences concerning Ramanujan's tau function, Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 9, no 1 (1967-1968), exp. no 14, pp. 1-17.
MATHEMATICA
a[n_] := RamanujanTau[n]^2 - 4*n^11; Array[a, 20] (* Amiram Eldar, Aug 19 2022 *)
PROG
(PARI) a(n) = ramanujantau(n)^2 - 4*n^11; \\ Michel Marcus, Aug 19 2022
CROSSREFS
Sequence in context: A128147 A326391 A068918 * A362124 A158036 A242865
KEYWORD
sign
AUTHOR
Michel Marcus, Aug 19 2022
STATUS
approved