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Abstract

While studying the stable roommates problem, it appears that some instances only differ by a
permutation, and it can affects some counting problems, for example the counting of the unstable
instances. We show here a formula giving the number of non-isomorphic instances of the stable
roommates problem of cardinality n. We also show that equivalence classes’ cardinality under the
permutations’ action almost reach their maximum

1 Introduction

1.1 Definitions
Definition 1. We will represent here an instance of the problem as a set of n n-uples, in which the
first value is the agent’s index, and the other values is the preference list itself.

Example 1. The following set :
{(1, 2, 3, 4),
(2, 3, 1, 4),
(3, 1, 2, 4),
(4, 1, 2, 3)}
represents the instance of cardinality 4 in which the agent 1 ranks 2 in first position, then 3 and finally
4 etc.

Definition 2. Let In(SR) be the set of every instances of the roommates problem of cardinality n.

Definition 3. Given {(ai,k)k∈J1,nK|i ∈ J1, nK} = I ∈ In(SR) and i ∈ J1, nK a fixed integer, let σi ∈ Sn

be the only permutation such that (σi(1), σi(2), ..., σi(n)) = (ai,k)

1.2 Motivations
At first sight, the number of instances of the problem of cardinality n appears to be (n− 1)!n since an
instance can be described as an n×n matrix with its first column fixed, and with each integer between
1 and n appearing once in each line. However, some distinct instances (with this counting method)
only differ by a permutation.

Example 2. The following instances
{(1, 2, 3, 4), {(2, 1, 3, 4),
(2, 3, 1, 4), (1, 3, 2, 4),
(3, 1, 2, 4), (3, 1, 2, 4),
(4, 1, 2, 3)} (4, 1, 2, 3)}
only differ by the permutation (1 2)

We observe that these kind of instances have the same properties in a way that will be explained
in 2.2.

Moreover, aside from the fact that exhaustive studies can be made more quickly, for orbits under
a group action are of different cardinalities, it can be more relevant to count the number of orbits
fulfilling a given condition, rather than counting the number of instances fulfilling that condition.
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Example 3. • The instances that do not admit a stable matching are, permutations excepted,
{(1, 2, 3, 4), (2, 3, 1, 4), (3, 1, 2, 4), (4, arbitrary)}

• There are 48 instances that do not admit a stable matching, so 1
27 of every instances.

• There are 60 instances non-isomorphic 2 by 2 and two of those do not admit a stable matching,
so 1

30 of every non-isomorphic instances do not admit a stable matching.

Proof. • Given I ∈ I4(SR) an instance that does not admit a stable matching. The matching
{{1, 2}, {3, 4}} is not stable, without loss of generality we assume 1 and 3 form a blocking pair :
(1, ..., 3, ..., 2, ...) ∈ I
(3, ..., 1, ..., 4, ...) ∈ I
But {{a, c}, {b, d}} is not stable either. We assume without loss of generality that 1 is part of a
blocking pair, hence 2 is part of the blocking pair too.
(1, 4, 3, 2) ∈ I
(4, ..., 1, ..., 2, ...) ∈ I
Plus {{1, 4}, {2, 3}} is not a stable matching. 1 can’t be part of a blocking pair since 4 is ranked
first by 1, hence 4 is part of a blocking pair.
(4, 3, 1, 2) ∈ I
(3, 1, 4, 2) ∈ I

Finally, I =
{(1, 4, 3, 2)
(2, arbitrary)
(3, 1, 4, 2)
(4, 3, 1, 2)}

Which is differing from the expected instance only by the permutation (2 4).

• The agent that will be rejected by the other 3 : 4 possibilities. The cycle direction of the other
3 : 2! = 2 possibilities. The preference list of the rejected one : 3! = 6 possibilities. All in all
4 · 2 · 6 = 48.

• We can show this result with tools developed in the following parts, the proof is available in
appendix A.

2 Group action

2.1 Definition of instances’ permutations
We create a group action of Sn on In(SR), we define the following operation :

Sn × In(SR) −→ In(SR)

τ ∗ {(ai,1, ai,2, ..., ai,n)|i ∈ J1, nK} 7−→ {(τ(ai,1), τ(ai,2), ..., τ(ai,n))|i ∈ J1, nK}

We check the properties of a group action :

1. id ∗ {(ai,1, ai,2, ..., ai,n)|i ∈ J1, nK} = {(ai,1, ai,2, ..., ai,n)|i ∈ J1, nK}

2. (τ ◦ τ ′) ∗ {σi|i ∈ J1, nK} = {(τ ◦ τ ′)(ai,1), ..., (τ ◦ τ ′)(ai,n))|i ∈ J1, nK}
= {τ(τ ′(ai,1)), ..., τ(τ ′(ai,1))|i ∈ J1, nK} = τ ∗ {τ ′(ai,1), ..., τ ′(ai,1))|i ∈ J1, nK}

The defined operation is a group action. We want to count the number of distincts orbits under
this group action, i.e. the cardinality of the quotient set In(SR)/Sn.

Definition 4. Given τ ∈ Sn, I ∈ In(SR) and M a matching on I.
We define τ ∗M = {{τ(a), τ(b)}, {a, b} ∈ M}
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2.2 Effect of a permutation on an instance
Theorem 1. Given I ∈ In(SR), τ ∈ Sn and M a matching on I.
{a, b} is a blocking pair on M if and only if {τ(a), τ(b)} is a blocking pair on τ ∗M .

Proof. We show only one implication, the other one can be obtained with the exact same argument
with the permutation τ−1.
Given I, τ,M, a and b as described above.
Let {a, b} be a blocking pair on M , let M(a),M(b) be the agents matched with a and b in M respec-
tively.
In the instance I, the preference lists are :
(a, ..., b, ...,M(a), ...) ∈ I
(b, ..., a, ...,M(b), ...) ∈ I
Hence in the instance τ ∗ I :
(τ(a), ..., τ(b), ..., τ(M(a)), ...) ∈ τ ∗ I
(τ(b), ..., τ(a), ..., τ(M(b)), ...) ∈ τ ∗ I
However, by definition, τ(M(a)) = M(τ(a)) and τ(M(b)) = M(τ(b)), thus {τ(a), τ(b)} is a blocking
pair in τ ∗M .

Corollary 1. Given I ∈ In(SR), ∀J ∈ ω(I), I and J have the same properties of stability i.e. I admits
a stable matching if and only if J admits a stable matching, more generally, J admits a minimum of
k blockings pairs if and only if I admits a minimum of k blocking pairs.

2.3 Properties of orbits and fixed points
Theorem 2. Given A = {I ∈ In(SR), σ1 = id}, B = {ω(I), I ∈ A} covers In(SR)

Proof. It is known that the set of every orbits is a partition of In(SR). We show that B contains every
orbits. Given I ∈ In(SR), Ĩ = σ−1

1 ∗ I ∈ ω(I), I ∈ ω(Ĩ) and by definition, the preference list of the
agent 1 in Ĩ is the uple (1, 2, ..., n).

Fixing the first line in addition to the first column, the number of such instances is (n− 1)!n−1 so
|A| = (n− 1)!n−1 ≥ |In(SR)/Sn|

Lemma 1. Given an instance I ∈ In(SR) : {id} ⊂ Stab(I) ⊂ {σi ◦ σ−1
1 , i ∈ J1, nK}.

Proof. The proof of id ∈ Stab(I) is straightforward. Given τ ∈ Stab(I), ∃k ∈ J1, nK, τ ◦ σ1 = σk ⇐⇒
τ = σk ◦ σ−1

1 .

Lemma 2. (n−1)!n−1

n ≤ |In(SR)/Sn| ≤ (n− 1)!n−1

Proof. According to lemma 2, |{id}| ⩽ |Stab(I)| ⩽ |{σi ◦ σ−1
1 , i ∈ J1, nK}|

⇔ 1 ⩽ |Stab(I)| ⩽ n ⇔ 1 ≥ 1
|Stab(I)| ≥

1
n ⇔ |Sn|

1 ≥ |Sn|
|Stab(I)| ≥

|Sn|
n ⇔ n! ≥ |ω(I)| ≥ (n− 1)!

Thus :
|In(SR)|

n! ≤ |In(SR)/Sn| ≤ |In(SR)|
(n−1)! ⇐⇒ (n−1)!n−1

n ≤ |In(SR)/Sn| ≤ (n− 1)!n−1

2.4 Counting elements of Fix(τ)

Given n ∈ N, τ ∈ Sn. The purpose of this part is counting the elements of the sets Fix(τ) = {I ∈
In(SR), τ ∗ I = I}.

Theorem 3. Given τ ∈ Sn let (a1, a2, ..., ak) be its cyclic type.

• If a1 = a2 = ... = ak, |Fix(τ)| = (n− 1)!k = (n− 1)!
n
a1

• Else, |Fix(τ)| = 0
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Proof. • If |Fix(τ)| > 0, I ∈ In(SR), τ ∗ I = I exists. Plus, if there is i, j ∈ J1, nK, ai ∤
aj , let A1, A2, ..., Ak be the associated set to the cycles C1, C2, ..., Ck (respectively of length
a1, a2, ..., ak).
τaj = ... ◦ C

aj

j ◦ C
aj

i = ... ◦ id ◦ C
aj

i with C
aj

i ̸= id however, let Ai = {xi,1, xi,2, ..., xi,ai
} and

Aj = {xj,1, xj,2, ..., xj,aj} such that τk(xj,1) = xj,k+1. Hence :
xj,1 = τ(xj,aj

) = τaj (xj,1) = xj,1, so τaj has to be equal to id, otherwise the image of the xj,aj
’s

preference list can’t be xj,1’s preference list. However, τaj ̸= id since C
aj

i ̸= id

• If each cycle of τ are indeed of same length, an instance I of Fix(τ) can be explicited :
Let a be the common length of the cycles.
Let us choose one index in each cycle whose agent’s preference lists will be explicited arbitrarily.
The other preference lists are the iterated image of those preference lists under the action of τ .
I ∈ Fix(τ) is straightforward to check :
∀x ∈ I, ∃i ∈ J0, aKx = τ i ∗ x0 where x0 is a line initially fixed. Thus, τ ∗ x = τ i+1moda ∗ x0 ∈ I.

Example 4. For n = 6, τ = (1 2 3) ◦ (4 5 6). By fixing the preference lists of the agents 1 and 4
arbitrarily :
(1, 2, 3, 4, 5, 6), (4, 2, 6, 1, 5, 3) ∈ Iτ ◦ (1, 2, 3, 4, 5, 6) = (2, 3, 1, 5, 6, 4) ∈ I
τ2 ◦ (1, 2, 3, 4, 5, 6) = (3, 1, 2, 6, 4, 5) ∈ I
τ ◦ (4, 2, 6, 1, 5, 3) = (5, 3, 4, 2, 6, 1) ∈ I
τ2 ◦ (4, 2, 6, 1, 5, 3) = (6, 1, 5, 3, 4, 2) ∈ I
And the instance
I = {(1, 2, 3, 4, 5, 6), (2, 3, 1, 5, 6, 4), (3, 1, 2, 6, 4, 5), (4, 2, 6, 1, 5, 3), (5, 3, 4, 2, 6, 1), (6, 1, 5, 3, 4, 2)}
is indeed in Fix(τ).

3 Counting instances

3.1 Cardinality of the quotient set
Theorem 4 (1). Given k, n ∈ N2, let Pk,n be the number of partitions of J1, nK where each part is of
length k.

Pn,n = 1

P1,n = 1

Pk,n =

(
n− 1

k − 1

)
Pk,n−k

Or :

Pk,n =

n
k∏

i=1

(
ki− 1

k − 1

)
=

n!

k!
n
k (nk )!

Proof. Base case Pn,1 = Pn,n = 1 : There is only one way to share J1, nK into n parts of size 1, and
one way to share the same set in one part of size n.
Induction step Assuming Pn,k =

∏n
k
i=1

(
ki̇−1
k−1

)
, thus :

Pn+k,k =
(
n+k−1
k−1

)
Pn,k =

(
n+k−1
k−1

)∏n
k
i=1

(
ki−1
k−1

)
=

∏n+1
k

i=1

(
ki−1
k−1

)
Or :∏n

k
i=1

(
ki−1
k−1

)
=

∏n
k
i=1

k
ki

(
ki
k

)
=

∏n
k
i=1

1
i

∏n
k
i=1

(ki)!
k!(k(i−1))! =

n!
(n
k )!

∏n
k
i=1

1
k! =

n!

(n
k )!k!

n
k

Theorem 5. Given n ∈ N, there is exactly

|In(SR)/Sn| =
∑
k|n

kk(n− 1)!k

nkk!

instances of cardinality n non-isomorphic 2 by 2.
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Proof. According to theorem 4, the problem is reduced to count |Fix(τ)| for every τ whose cyclic type
contains only a fixed number k i.e. where τ can be written as n

k disjoints k-cycles. By definition, there
is Pn,k partition of J1, nK respecting the condition forementioned. Plus, for such a partition, there are
(k− 1)!

n
k permutations whose cycle notation gives a cycle in each parts of the given partition. Finally,

there are Pn,k(k− 1)!
n
k permutations τ such that |Fix(τ)| > 0, and in this case, |Fix(τ)| = (n− 1)!

n
k .

By applying the Burnside formula :

|In(SR)/Sn| =
1

|Sn|
∑

τ∈Sn

|Fix(τ)| = 1

|Sn|
∑
k|n

∑
τ∈Snproduct of k-cycles

|Fix(τ)|

=
1

n!

∑
k|n

(n− 1)!
n
k (k − 1)!

n
k Pn,k =

1

n!

∑
k|n

(n− 1)!
n
k (k − 1)!

n
k

n
k∏

i=1

(
k − 1

ki− 1

)

=
1

n!

∑
k|n

(n− 1)!
n
k (k − 1)!

n
k

n!

k!
n
k (nk )!

=
∑
k|n

(n− 1)!
n
k

k
n
k (nk )!

=
∑
k|n

(n− 1)!k(
n
k

)k
k!

The 12 firsts terms :

1. 1

2. 1

3. 2

4. 60

5. 66360

6. 4147236820

7. 19902009929142960

8. 10325801406739620796634430

9. 776107138571279347069904891019268480

10. 10911068841557131648034491574230872615312437194176

11. 35994624192947744840352324616606223433003529309090909090909420800

12. 34161084712910360681870077991930409911045715297535140214930023520992106407125246400

3.2 Asymptotic analysis
Theorem 6. The cardinality of |In(SR)/Sn| is asymptotically similar to the infimum :

|In(SR)/Sn| ∼
(n− 1)!n−1

n

Proof. Given k|n, k ̸= n :(
(n−1)!k

(n
k )

k
k!

)
(

(n−1)!n−1

n

) = kk

nk−1(n−1)!n−1−k < nk

nk−1(n−1)!n−1−k = n
(n−1)!n−1−k

Since k ≥ n, k ̸= n and n− 1 ∤ n, n− 1− k ≥ 1, so for n > 2, (n− 1)!n−1−k ≥ (n− 1)!, thus
n

(n−1)!n−1−k ≤ n
(n−1)! −→ 0

Hence, ∀k|n, k ̸= n, (n−1)!k

(n
k )

k
k!

= o
(

(n−1)!n−1

n

)
. Finally :

∑
k|n

(n− 1)!k(
n
k

)k
k!

=
(n− 1)!n−1

n
+

∑
k|n,k ̸=n

(n− 1)!k(
n
k

)k
k!

=
(n− 1)!n−1

n
+

∑
k|n,k ̸=n

o(
(n− 1)!n−1

n
)

=
(n− 1)!n−1

n
+ o(

(n− 1)!n−1

n
) ∼ (n− 1)!n−1

n
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A Appendix
Proof. 3rd point of example 3 :
Given the instances
I =
{(1, 2, 3, 4),
(2, 3, 1, 4),
(3, 1, 2, 4),
(4, 1, 2, 3)}

J =
{(1, 2, 3, 4),
(2, 3, 1, 4),
(3, 1, 2, 4),
(4, 1, 2, 3)}

It is straightforward to observe that every σi, i ∈ J2, 4K are not in the stabilizer, so Stab(I) =

Stab(J) = {id}, thus |ω(I)| = |Sn|
|Stab(I)| = 4!

1 = 24. Hence let E be the set of every instances of
cardinality 4 that does not admit a stable matching : ω(I) ⊔ ω(J) ⊂ E and |ω(I) ⊔ ω(J)| = |E| so
ω(I) ⊔ ω(J) = E.
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