%I #12 Aug 13 2022 11:29:17
%S 1,0,2,15,92,1050,8514,147000,1546544,29673000,478186920,9011752200,
%T 178483287432,4205087686800,91775320005264,2290742704668600,
%U 63289842765692160,1696665419122968000,50287699532618564544,1549916411848463721600
%N Expansion of e.g.f. ( Product_{k>0} 1/(1 - k * x^k) )^x.
%F a(0) = 1, a(1) = 0; a(n) = Sum_{k=2..n} k * A354848(k-1) * binomial(n-1,k-1) * a(n-k).
%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, 1-k*x^k)^x))
%o (PARI) a354848(n) = (n-1)!*sumdiv(n, d, d^(n/d+1));
%o a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*a354848(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
%Y Cf. A078308, A353993, A354848.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Aug 12 2022