OFFSET
0,5
COMMENTS
This sequence has similarities with A022290, and is related to negaFibonacci representations.
LINKS
FORMULA
EXAMPLE
MATHEMATICA
Table[Reverse[#].Fibonacci[-Range[Length[#]]] &@ IntegerDigits[n, 2], {n, 0, 69}] (* Rémy Sigrist, Aug 05 2022 *)
PROG
(PARI) a(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=fibonacci(-1-k)); return (v) }
(Python)
from sympy import fibonacci
def A356327(n): return sum(fibonacci(-a)*int(b) for a, b in enumerate(bin(n)[:1:-1], start=1)) # Chai Wah Wu, Aug 31 2022
CROSSREFS
KEYWORD
sign,base
AUTHOR
Rémy Sigrist, Aug 03 2022
STATUS
approved