login
A356296
a(n) = Fibonacci(n)^2 mod n.
1
0, 1, 1, 1, 0, 4, 1, 1, 4, 5, 1, 0, 1, 1, 10, 9, 1, 10, 1, 5, 4, 1, 1, 0, 0, 1, 22, 9, 1, 10, 1, 25, 4, 1, 25, 0, 1, 1, 4, 25, 1, 22, 1, 9, 40, 1, 1, 0, 22, 25, 4, 9, 1, 10, 25, 49, 4, 1, 1, 0, 1, 1, 22, 25, 25, 64, 1, 9, 4, 15, 1, 0, 1, 1, 25, 9, 4, 64, 1, 25, 49, 1, 1, 72, 25, 1
OFFSET
1,6
LINKS
FORMULA
a(n) = A000045(n)^2 mod n.
MAPLE
A356296 := proc(n)
modp(combinat[fibonacci](n)^2, n) ;
end proc:
seq(A356296(n), n=1..120) ;
MATHEMATICA
Array[PowerMod[Fibonacci[#], 2, #] &, 86] (* Michael De Vlieger, Aug 03 2022 *)
PROG
(PARI) a(n) = lift(Mod(fibonacci(n), n)^2); \\ Michel Marcus, Aug 03 2022
(Python)
from sympy import fibonacci
def a(n): return pow(fibonacci(n), 2, n)
print([a(n) for n in range(1, 87)]) # Michael S. Branicky, Aug 04 2022
CROSSREFS
Cf. A000045, A002708, A023172 (location of zeros), A337231, A337232.
Sequence in context: A176263 A110812 A151904 * A222360 A222371 A222479
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Aug 03 2022
STATUS
approved