login
A356289
a(n) = Sum_{k=0..n} binomial(2*n, n-k) * v(k), where v(k) is the number of overpartitions of n (A015128).
1
1, 4, 18, 82, 372, 1676, 7500, 33358, 147570, 649722, 2848524, 12441434, 54155774, 235008672, 1016971480, 4389589484, 18902538548, 81222609020, 348308661820, 1490884718484, 6370468593732, 27176620756392, 115760526170340, 492386739902574, 2091554077819948, 8873225318953248
OFFSET
0,2
FORMULA
a(n) ~ 2^(2*n - 7/6) * exp(3 * Pi^(4/3) * n^(1/3) / 2^(8/3)) / (sqrt(3) * Pi^(2/3) * n^(2/3)).
MATHEMATICA
Table[Sum[Sum[PartitionsP[k-j]*PartitionsQ[j], {j, 0, k}] * Binomial[2*n, n-k], {k, 0, n}], {n, 0, 30}]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 02 2022
STATUS
approved