login
A356177
Palindromes in A333369.
1
1, 3, 5, 7, 9, 22, 44, 66, 88, 111, 212, 232, 252, 272, 292, 333, 414, 434, 454, 474, 494, 555, 616, 636, 656, 676, 696, 777, 818, 838, 858, 878, 898, 999, 2002, 2222, 2442, 2662, 2882, 4004, 4224, 4444, 4664, 4884, 6006, 6226, 6446, 6666, 6886, 8008, 8228, 8448, 8668, 8888, 10101
OFFSET
1,2
COMMENTS
If a term has a decimal digit that is odd, it must have an odd number of decimal digits and all odd digits are the same. - Chai Wah Wu, Jul 29 2022
If a term has an even number of decimal digits, then it must have only even decimal digits. - Bernard Schott, Jul 30 2022
LINKS
EXAMPLE
474 is palindrome and 474 has two 4's and one 7 in its decimal expansion, hence 474 is a term.
MATHEMATICA
simQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Range[10^4], PalindromeQ[#] && simQ[#] &] (* Amiram Eldar, Jul 28 2022 *)
PROG
(Python)
from itertools import count, islice, product
def simb(n): s = str(n); return all(s.count(d)%2==int(d)%2 for d in set(s))
def pals(): # generator of palindromes
digits = "0123456789"
for d in count(1):
for p in product(digits, repeat=d//2):
if d > 1 and p[0] == "0": continue
left = "".join(p); right = left[::-1]
for mid in [[""], digits][d%2]:
yield int(left + mid + right)
def agen(): yield from filter(simb, pals())
print(list(islice(agen(), 55))) # Michael S. Branicky, Jul 28 2022
(Python) # faster version based on Comments
from itertools import count, islice, product
def odgen(d): yield from [1, 3, 5, 7, 9] if d == 1 else sorted(int(f+"".join(p)+o+"".join(p[::-1])+f) for o in "13579" for f in o + "2468" for p in product(o+"02468", repeat=d//2-1))
def evgen(d): yield from (int(f+"".join(p)+"".join(p[::-1])+f) for f in "2468" for p in product("02468", repeat=d//2-1))
def A356177gen():
for d in count(1, step=2): yield from odgen(d); yield from evgen(d+1)
print(list(islice(A356177gen(), 55))) # Michael S. Branicky, Jul 30 2022
CROSSREFS
Intersection of A002113 and A333369.
Cf. A355770, A355771, A355772, A100706 (subsequence of repunits).
Sequence in context: A241175 A342729 A099995 * A329364 A100028 A053681
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 28 2022
STATUS
approved