login
A356169
a(n) = n - gcd(n, A003961(A356164(n))), where A356164(n) is the smallest positive k such that n divides k*A003961(k), and A003961 is fully multiplicative with a(p) = nextprime(p).
5
0, 1, 0, 3, 0, 3, 0, 7, 0, 5, 0, 9, 0, 7, 10, 15, 0, 9, 0, 15, 0, 11, 0, 21, 0, 13, 0, 21, 0, 15, 0, 31, 0, 17, 28, 27, 0, 19, 0, 35, 0, 21, 0, 33, 30, 23, 0, 45, 0, 25, 0, 39, 0, 27, 0, 49, 0, 29, 0, 45, 0, 31, 0, 63, 0, 33, 0, 51, 0, 63, 0, 63, 0, 37, 50, 57, 66, 39, 0, 75, 0, 41, 0, 63, 0, 43, 0, 77, 0, 75, 0, 69
OFFSET
1,4
FORMULA
a(n) = n - A356168(n) = n - gcd(n, A003961(A356164(n))).
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A356169(n) = for(k=1, oo, if((k*A003961(k))%n==0, return(n-gcd(n, A003961(k)))));
CROSSREFS
Cf. A003961, A356164, A356166, A356168, A356171 (positions of 0's), A356172.
Sequence in context: A022901 A348215 A331739 * A055945 A138123 A328382
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 28 2022
STATUS
approved